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PROBLEM
• Compute a robust policy π for an MDP
〈S,A, τ, R〉 whose transition probabilities
τ(st+1|st, at) are unknown

• Only a limited number of trajectories generated
from a reference policy π̃ is available

• Robust optimization approach:

– Define uncertainty sets Ξ based on sam-
ples such that, with high probability, τ ∈
Ξ

– Find the optimal policy against the worst-
case dynamics in Ξ:

max
π∈Π

min
τ∈Ξ

ρ(π, τ) := Eτ,π

[
T−1∑
t=1

R(St, At, St+1)

]

MOTIVATION
• The majority of the RMDP literature consid-

ers rectangular uncertainty sets [Wiesemann et al.,
2013]:

Ξ = {τ : ∀s, a ∈ S ×A, ‖τ(·|s, a)− ps,a‖ ≤ εs,a}

• Rectangular RMDPs:

– Polynomial-time optimization

– Robust Bellman optimality equation

– Very conservative solutions

• Non-rectangular RMDPs:

– NP-hard optimization problem in general
[e.g., Mannor et al., 2012]

CONTRIBUTIONS
1. We propose policy-conditioned uncertainty

sets:

• Non-rectangular uncertainty sets via
marginal statistics of the given trajectories

• Off-policy robustness: the impact of the
reference policy on the desired control
policy is considered in the learning pro-
cess

• Tractable and convex optimization by
shifting to parameterized control prob-
lems

2. We provide empirical results showing the
benefits of our approach over rectangular
RMDPs

MARGINALLY-CONSTRAINED ROBUST CONTROL PROCESSES
NON-RECTANGULAR UNCERTAINTY SETS VIA MARGINAL FEATURES

• We consider features φ(st, at, st+1) to model the relationships between states and actions

• Feature expectations [Abbeel and Ng, 2004] to model the interaction of a policy π with the decision process

κφ(π, τ) = Eτ,π

[
T−1∑
t=1

φ(St, At, St+1)

]

• Use feature expectations to define the uncertainty sets:

Slack-free : Ξφπ̃ =
{
τ : κφ(π̃, τ) = κ̂φ

}
vs Slack-based : Ξ̃φπ̃ =

{
τ : ‖κφ(π̃, τ)− κ̂φ‖ ≤ ε

}

BENEFITS

• Non-rectangular

• Constrain whole trajectories

• Dependence on the reference policy

• Generalization across the state-space

MARGINALLY-CONSTRAINED ROBUST MDP

max
π

min
τ∈Ξφ

π̃

{
ρ(π, τ)− λ−1H(τ)

}
max
ω

{
max
π

softmin
τ

(
ρ(π, τ) + ω · κφ(π̃, τ)

)
− ω · κ̂φ

}
ALTERNATED OPTIMIZATION

1. Optimize return ρ. Find the equilibrium (π∗, τ∗) of the inner zero-sum game using min-max dynamic programming:

(π∗, τ∗)← max
π

softmin
τ

{
ρ(π, τ) + ω · κφ(π̃, τ)

}
2. Match Statistics κ̂φ. Update parameters ω so that τ∗ matches the sample statistics under the reference policy π̃:

ω ← ω + η
(
κφ(π̃, τ∗)− κ̂φ

) Match Statistics
κ̂φ

Optimize Return
ρ

ω π∗, τ∗

MIXED-OBJECTIVE MINIMAX OPTIMAL CONTROL
• Issue. Solving the zero-sum game at step 1 requires finding dynamics τ that minimize the sum of two expected returns under different policies

– NP-hard problem [Petrik et al., 2016]→ Non-Markovian solution

• Main result. Markovian solution when augmenting the state space with a continuous belief state to keep track of the relative importance of the two policies:

bt =

∏t
i=1 π(ai|hi)∏t

i=1 π(ai|hi) +
∏t
i=1 π̃(ai|si)

→ bt+1 =
btπ(at+1|ht+1)

btπ(at+1|ht+1) + (1− bt)π̃(at+1|st+1)

• The equilibrium can be found by solving a min-max dynamic program using discretized belief states:

τ∗(st+1|st, at, bt) =
e−λQ(st,at,bt,st+1)∑
s′t+1

e−λQ(st,at,bt,s′t+1)
π∗(st, bt−1) = arg max

at

V ′ (st, at, bt)

RESULTS
GRID WORLD

10 12 14 16
−1,000

−800

−600

−400

−200

Grid Size

E
x
p
ec
te
d
R
et
u
rn

True Dynamics τ

10 12 14 16
Grid Size

Estimated Dynamics τ ∗

BELIEF DISCRETIZATION

20 40 60 80

−0.6

−0.3

0

0.3

0.6

Number of Belief States

A
p
p
ro
x
im

at
io
n
E
rr
or

Objective Value
Expected Return
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