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Motivating Example
1

Optimal control of a water reservoir

Learn per-day water release decisions

1 sample = 1 day ⇒ Impractical to learn in the
real world

Lots of historical data might be available from
different reservoirs → Transfer
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Transfer of Samples
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Source Task M1

Source Task M2

Source Task Mm

Target Task M0

〈s, a, s′, r〉

D1

D2

Dm

Tasks are MDPs Mj = 〈S,A,Pj ,Rj〉
Shared state-action space (S ×A)
Different reward (Rj) and transition (Pj)
models
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Transfer of Samples
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Source Task M1

Source Task M2

Source Task Mm

Target Task M0

〈s, a, s′, r〉

D1

D2

Dm

Why transferring samples?

Decoupled from the learning algorithm

Does not require source tasks to be solved

Data can come from any distribution
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Previous Works
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Source Task M1

Source Task M2

Source Task Mm

Target Task M0

〈s, a, s′, r〉

Mostly focus on sample selection

Intuition: We are willing to introduce
some bias to greatly reduce the variance

Bias > variance ⇒ Negative transfer

Non-trivial task

[Lazaric et al., 2008, Taylor et al., 2008, Lazaric and Restelli, 2011, Laroche and Barlier, 2017]
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Our Proposal
5

w1

w2

wm

Source Task M1

Source Task M2

Source Task Mm

Target Task M0

〈s, a, s′, r,w〉

Transfer all samples available

Assign weights proportional to their
importance in solving the target task

Reduce variance while ideally unbiased
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Transfer via Importance Weighting
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Fitted Q-Iteration [Ernst et al., 2005] → Sequence of supervised learning problems:

Qk+1 = arg inf
h∈H

1

|D|
∑
D

∣∣∣h(s, a)− T̂Qk(s, a)∣∣∣2 T̂Qk(s, a) = r + γmax
a′

Qk(s
′, a′)

Different tasks ⇒ sample-selection bias → Use importance weighting
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Importance Weighted Fitted Q-Iteration (IWFQI)
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1 Fit the target reward function

R̂ = arg inf
h∈H

1

Zr

m∑
j=0

∑
Dj

wr |h(s, a)− r|2 wr =
R0(r|s, a)
Rj(r|s, a)

2 Replace the empirical Bellman operator with:

T̃Qk(s, a) = R̂(s, a) + γmax
a′

Qk(s
′, a′)

3 Iteratively fit the value function:

Qk+1 = arg inf
h∈H

1

Zp

m∑
j=0

∑
Dj

wp

∣∣∣h(s, a)− T̃Qk(s, a)∣∣∣2 wp =
P0(s′|s, a)
Pj(s′|s, a)

Weights have to be estimated → We use Gaussian processes
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Theoretical Analysis
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Error bound for IWFQI
(extends [Munos and Szepesvári, 2008, Farahmand et al., 2010, Cortes et al., 2010])

‖Q∗ −QπK‖1,ρ ≤ f
(

approximation + estimation + bias + propagation
)

Differently from previous works [Lazaric and Restelli, 2011]:

Bias does not depend on the differences between tasks

Estimation error depends on the number of effectively transferred samples
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Empirical Evaluation - Puddle World
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IWFQI IWFQI (ideal weights)

Relevance-based [Lazaric et al., 2008]

Shared-dynamics [Laroche and Barlier, 2017]

FQI [Ernst et al., 2005]
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Empirical Evaluation - Water Reservoir Control
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No Transfer

200k samples ≈ 500 years!
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Optimal Expert

Relevance-based [Lazaric et al., 2008]

FQI [Ernst et al., 2005]
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Conclusion
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We presented Importance Weighted Fitted Q-iteration

Transfer all samples via importance weighting

Decouple rewards and transitions

Theoretically well-grounded

Better empirical performance than existing methods
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Contacts
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andrea.tirinzoni@polimi.it

https://github.com/AndreaTirinzoni/

Please visit us at poster #207 @ Hall B
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Theoretical Analysis
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Lp-norm bounds for AVI [Munos and Szepesvári, 2008, Farahmand et al., 2010]

‖Q∗ −QπK‖1,ρ ≤
2γ

(1− γ)2

2γKQmax + inf
b∈[0,1]

√√√√Cρ,µ(K; b)

K−1∑
k=0

α2b
k ‖εk‖2µ


εk = T ∗Qk −Qk+1
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Theoretical Analysis
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Error bound for IWFQI

‖εk‖µ ≤ Qmax

√
‖gp‖1,µ + 2Rmax

√
‖gr‖1,µ + 2Qmax‖w̃p − wp‖φPS + 4Rmax‖w̃r − wr‖φRS

+ inff∈H ‖f − (T ∗)k+1Q0‖µ + 2 inff∈H ‖f −R‖µ +
∑k−1
i=0 (γCAE(µ))

i+1‖εk−i−1‖µ

+ 2
13
8 Qmax

(√
M(w̃p) + 2

√
M(w̃r)

)(
d log 2Ne

d +log 4
δ

N

) 3
16

Irreducible approximation error of value and reward functions
Error propagation through iterations
Estimation error: finite samples & importance-weight variance [Cortes et al., 2010]

Importance weights must be estimated → bias
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Importance Weight Estimation
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Problem: the task models R and P are unknown → The importance weights cannot
be computed exactly
Solution: Fit Gaussian processes for the models R and P of each task

Try to characterize the resulting weight distribution G
Gaussian models → Closed-form for the mean weights

EG [wr(s, a)] = C
N
(
r
∣∣µGP0(s, a), σ

2
0(s, a) + σ2GP0

(s, a)
)

N
(
r
∣∣µGPj (s, a), σ

2
j (s, a)− σ2GPj

(s, a)
)
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Experimental Evaluation - Puddle World
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Target Task Source Task 1 Source Task 2 Source Task 3
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